Can/Psych 3 Larry Minikes Can/Psych 3 Larry Minikes

Brain imaging insight into cannabis as a pain killer

December 20, 2012

Science Daily/University of Oxford

The pain relief offered by cannabis varies greatly between individuals, a brain imaging study carried out at the University of Oxford suggests.

 

The researchers found that an oral tablet of THC, the psychoactive ingredient in cannabis, tended to make the experience of pain more bearable, rather than actually reduce the intensity of the pain.

 

MRI brain imaging showed reduced activity in key areas of the brain that substantiated the pain relief the study participants experienced.

 

'We have revealed new information about the neural basis of cannabis-induced pain relief,' says Dr Michael Lee of Oxford University's Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB).

 

He adds: 'Our small-scale study, in a controlled setting, involved 12 healthy men and only one of many compounds that can be derived from cannabis. That's quite different from doing a study with patients. My view is the findings are of interest scientifically but it remains to see how they impact the debate about use of cannabis-based medicines. Understanding cannabis' effects on clinical outcomes, or the quality of life of those suffering chronic pain, would need research in patients over long time periods.'

 

The researchers report their findings in the journal Pain. The study was funded by the UK Medical Research Council and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre.

 

Long-term pain, often without clear cause, is a complex healthcare problem. Different approaches are often needed to help patient manage pain, and can include medications, physiotherapy and other forms of physical therapy, and psychological support. For a few patients, cannabis or cannabis-based medications remain effective when other drugs have failed to control pain, while others report very little effect of the drug on their pain but experience side-effects.

 

'We know little about cannabis and what aspects of pain it affects, or which people might see benefits over the side-effects or potential harms in the long term. We carried out this study to try and get at what is happening when someone experiences pain relief using cannabis,' says Dr Lee.

 

The Oxford research team carried out a series of MRI scans with each of the 12 volunteers at the FMRIB centre in Oxford.

 

Before a scan, participants were given either a 15mg tablet of THC or a placebo. THC, or delta-9-tetrahydrocannabinol, is the active psychotropic compound in cannabis -- the ingredient that's responsible for the high that drives recreational use of the drug.

 

To induce a certain level of pain, the volunteers also had a cream rubbed into the skin of one leg. This was either a dummy cream or a cream that contained 1% capsaicin, the ingredient of chillis that causes a hot, burning and painful sensation.

 

Each participant had four MRI tests to cover each combination of THC or placebo, and chilli pain-inducing cream or dummy cream.

 

'The participants were asked to report the intensity and unpleasantness of the pain: how much it burned and how much it bothered them,' says Dr Lee. 'We found that with THC, on average people didn't report any change in the burn, but the pain bothered them less.'

 

While this average effect was statistically significant, there was great variability among the participants in THC's effect on the pain they experienced. Only six out of the 12 reported a clear change in how much the pain bothered them, for example.

 

The brain imaging results substantiate the reports of the participants. The change in unpleasantness of pain was matched with a suppression of activity in the part of the brain called the anterior mid-cingulate cortex. This structure sits in a deep part of the brain and is involved in many functions, and has previously been implicated in the emotional aspects of pain.

 

There were also changes in activity of the right amygdala that correlated with the lessening in the unpleasantness of the pain with THC. It is already known that the right side of the amygdala can be 'primed' by pain.

 

Of most interest to the researchers, however, was the strength of the connection in individuals between their right amydala and a part of the cortex called the primary sensorimotor area. The strength of this connection in individual participants correlated well with THC's different effects on the pain that that volunteer experienced.

 

This is suggestive that there might be a way of predicting who would see benefits from taking cannabis for pain relief.

 

'We may in future be able to predict who will respond to cannabis, but we would need to do studies in patients with chronic pain over longer time periods,' says Dr Lee.

 

He adds: 'Cannabis does not seem to act like a conventional pain medicine. Some people respond really well, others not at all, or even poorly. Brain imaging shows little reduction in the brain regions that code for the sensation of pain, which is what we tend to see with drugs like opiates. Instead cannabis appears to mainly affect the emotional reaction to pain in a highly variable way.'

https://www.sciencedaily.com/releases/2012/12/121220195744.htm

Read More
Can/Psych 2 Larry Minikes Can/Psych 2 Larry Minikes

Painkilling system in brain: Too much of a good thing?

August 25, 2010

Science Daily/Scripps Research Institute

Repeatedly boosting brain levels of one natural painkiller soon shuts down the brain cell receptors that respond to it, so that the painkilling effect is lost, according to a surprising new study led by Scripps Research Institute and Virginia Commonwealth University scientists. The study has important implications for drug development.

 

The natural painkiller, 2-AG, is one of the two major "endocannabinoid" neurotransmitters. The other, anandamide, can be kept at high levels in the brain without losing its therapeutic effects, and researchers had hoped that the same would be true for 2-AG.

 

"One implication is that maximally elevating 2-AG levels in the brain might not provide a straightforward path to new pain drugs," says Benjamin F. Cravatt III, PhD, professor and chair of the Department of Chemical Physiology and member of the Skaggs Institute for Chemical Biology at Scripps Research in La Jolla, California, who led the study with Aron Lichtman, PhD, a professor of pharmacology and toxicology at Virginia Commonwealth University in Richmond, Virginia. "But we remain optimistic that more modest elevations in 2-AG could produce sustained pain relief. Perhaps more importantly, on a basic science level, we've been able to tease apart a key difference between the two major endocannabinoid signaling pathways, since one can maximally elevate anandamide without observing tolerance."

 

The report appears in the August 22, 2010 issue of Nature Neuroscience.

 

A Better Chill Pill

Like the opioid system, the endocannabinoid system was discovered as a result of humans identifying a plant -- in this case marijuana (cannabis sativa) -- that artificially boosts its activity. Marijuana's main active ingredient, THC, typically reduces pain and anxiety. Researchers have sought to develop drugs that reproduce such therapeutic effects while leaving out THC's unwanted side effects -- which include memory impairment, locomotor dysfunction, and possibly addiction.

 

Cannabinoid research received a boost in 1990 with the description of the main cannabinoid receptor in the brain, CB1, and a few years later with the discoveries of the body's own (endo-) cannabinoids, anandamide and 2-AG, which exert most of their effects by binding to CB1. Cannabinoid receptors are now known to be widely distributed in the brain, and when activated by anandamide or 2-AG, tend to calm the activity of the neurons where they reside. However, researchers so far have been unable to develop artificial cannabinoids that bind to CB1 without producing unwelcome THC-like side effects.

 

An alternative strategy has been to boost levels of the body's own cannabinoids by inhibiting the enzymes that normally break them down. And so far this has worked for anandamide. Inhibitors of its breakdown enzyme, fatty acid amide hydrolase (FAAH), have been shown to boost anandamide levels and reduce pain and inflammation without adverse side effects in animal tests and early clinical trials.

 

A similar strategy for boosting 2-AG may be promising, too, especially since 2-AG levels in the brain are naturally higher than anandamide's. Two years ago, the Cravatt and Lichtman laboratories jointly reported the development of an inhibitor of 2-AG's breakdown enzyme, monoacylglycerol lipase (MAGL). When administered to mice, it boosted their brain levels of 2-AG on average by a factor of eight, and produced a pain-killing effect comparable to that of FAAH inhibitors.

 

Diminishing Returns

Now the two labs report that 2-AG's pain-killing effect disappears after six days of treatment. "When you continually stimulate the endocannabinoid system by maximally raising 2-AG levels, you effectively desensitize the system," says Cravatt.

 

In one experiment, an injection of the MAGL inhibitor into mice showed evidence of pain relief on standard tests, but after six consecutive daily injections the drug could no longer achieve this effect. These chronically treated mice also lost much of their sensitivity to THC and to a synthetic CB1-binding compound, and showed a classic sign of drug dependency�when abruptly withdrawn from 2-AG's influence by having their CB1 receptors blocked, they developed paw flutters -- a murine version of the shakes.

 

"When we investigated at the molecular level, we found that the number of CB1 receptors in the mouse brains had been reduced," says Jacqueline Blankman, a graduate student at the Scripps Research Kellogg School of Science and Technology who was co-first-author on the paper with Joel Schlosburg of the Lichtman lab. This receptor "downregulation" occurred in some brain areas but not others

 

To confirm this effect, the researchers utilized another experimental mouse model where the gene for MAGL was inactivated. This lifelong genetic disruption of MAGL also resulted in high 2-AG levels as well as a reduced and desensitized CB1 system.

 

"Because we're seeing downregulation of the whole cannabinoid system and tolerance to the anti-pain effects, it does raise some concern about whether MAGL would be a suitable pain target," says Blankman.

 

"If you are going to inhibit MAGL, you probably wouldn't want to produce a complete inactivation of the enzyme," Cravatt adds.

 

By contrast with the 2-AG experiments, chronically boosting anandamide had none of these effects on the CB1 system. Cravatt doesn't yet know why these two molecules have such different impacts when delivered chronically. He notes, however, that anandamide may be produced selectively under stress conditions, and perhaps for that reason is less likely to trigger a brain-wide CB1 downregulation.

 

"The question of why anandamide and 2-AG have such different effects when given chronically is certainly going to be motivating us from now on," says Cravatt. "But already with this finding and the development of these models we've taken a significant step forward in understanding and being able to manipulate this important neurotransmitter system."

 

This study was supported by the National Institutes of Health.

https://www.sciencedaily.com/releases/2010/08/100824151036.htm

Read More