Health/Wellness3, TBI/PTSD7 Larry Minikes Health/Wellness3, TBI/PTSD7 Larry Minikes

Neurofeedback gets you back in the zone

New study from biomedical engineers demonstrates that a brain-computer interface can improve your performance

March 12, 2019

Science Daily/Columbia University School of Engineering and Applied Science

Researchers have shown -- for the first time -- that they can use online neurofeedback to modify an individual's arousal state to improve performance in a demanding sensory motor task, such as flying a plane or driving in suboptimal conditions.

 

Our state of arousal -- being fearful, agitated, or calm -- can significantly affect our ability to make optimal decisions, judgments, and actions in real-world dynamic environments. Imagine, for instance, walking across a balance beam. Your performance -- speed across the beam and the odds of making it across without falling off -- are dramatically better if the beam sits a mere six inches off the ground and you are relaxed rather than terror-stricken on a beam 60 feet higher. To keep you in the zone of maximum performance, your arousal needs to be at moderate levels, not so high that it pushes you over the edge.

 

Biomedical engineers at Columbia Engineering have shown -- for the first time -- that they can use online neurofeedback to modify an individual's arousal state to improve performance in a demanding sensory motor task, such as flying a plane or driving in suboptimal conditions. The researchers used a brain computer interface (BCI) to monitor, through electroencephalography (EEG) in real time, the arousal states of the study participants when they were engaged in a virtual reality aerial navigation task. The system generated a neurofeedback signal that helped participants to decrease their arousal in particularly difficult flight situations, which in turn improved participants' performance. The study was published today by Proceedings of the National Academy of Sciences.

 

"The whole question of how you can get into the zone, whether you're a baseball hitter or a stock trader or a fighter pilot, has always been an intriguing one," says Paul Sajda, professor of biomedical engineering (BME), electrical engineering, and radiology, who led the study. "Our work shows that we can use feedback generated from our own brain activity to shift our arousal state in ways that significantly improve our performance in difficult tasks -- so we can hit that home run or land on a carrier deck without crashing."

 

The 20 subjects in the study were immersed in a virtual reality scenario in which they had to navigate a simulated airplane through rectangular boundaries. Known as a boundary avoidance task, this demanding sensory-motor task model created cognitive stresses, such as making the boxes narrower every 30 seconds, that escalated arousal and quickly resulted in task failure -- missing or crashing into the boundary. But when the researchers used neurofeedback, the subjects did better, were able to fly longer while performing the difficult tasks that required high levels of visual and motor coordination.

 

There were three feedback conditions (BCI, sham, and silence) randomly assigned for every new flight attempt. In the BCI condition, subjects heard the sound of a low-rate synthetic heartbeat that was continuously modulated in loudness as a function of the level of inferred task-dependent arousal, as decoded from the EEG. The higher that level of arousal, the louder the feedback and vice versa. Participants' task performance in the BCI condition, measured as time and distance over which the subject can navigate before failure, was increased by around 20 percent.

 

"Simultaneous measurements of pupil dilation and heart rate variability showed that the neurofeedback indeed reduced arousal, causing the subjects to remain calm and fly beyond the point at which they would normally fail," says Josef Faller, the study's lead author and a postdoctoral research scientist in BME. "Our work is the first demonstration of a BCI system that uses online neurofeedback to shift arousal state and improve task performance in accordance with the Yerkes-Dodson law."

 

The Yerkes-Dodson law is a well-established and intensively studied law in behavioral psychology about the relationship between arousal and performance. Developed in 1908, it posits an inverse-relationship between arousal and task performance, that there is a state of arousal that is optimal for behavioral performance in a given task. In this new study, the researchers showed that they could use neurofeedback in real time to move an individual's arousal from the right side of the Yerkes-Dodson curve to the left, toward a state of improved performance.

 

"What's exciting about our new approach is that it is applicable to different task domains," Sajda adds. "This includes clinical applications that use self-regulation as a targeted treatment, such as mental illness."

 

The researchers are now studying how neurofeedback can be used to regulate arousal and emotion for clinical conditions such as PTSD. They are also exploring how they might use online monitoring of arousal and cognitive control to inform human-agent teaming, when a robot and a human work together in a high-stress situation like a rescue. If the robot has information on the human's arousal state, it could choose its tasks in a way that reduces its teammate's arousal, pushing her/him into an ideal performance zone.

 

"Good human-agent teams, like the Navy SEALS, do this already, but that is because the human-agents can read facial expressions, voice patterns, etc., of their teammates to infer arousal and stress levels," Sajda says. "We envision our system being a better way to communicate not just this type of information, but much more to a robot-agent."

https://www.sciencedaily.com/releases/2019/03/190312143206.htm

Read More
Health/Wellness Larry Minikes Health/Wellness Larry Minikes

Neurofeedback shows promise in treating tinnitus

November 27, 2017

Science Daily/Radiological Society of North America

Researchers using functional MRI (fMRI) have found that neurofeedback training has the potential to reduce the severity of tinnitus or even eliminate it, according to a new study

 

Tinnitus is the perception of noise, often ringing, in the ear. The condition is very common, affecting approximately one in five people. As sufferers start to focus on it more, they become more frustrated and anxious, which in turn makes the noise seem worse. The primary auditory cortex, the part of the brain where auditory input is processed, has been implicated in tinnitus-related distress.

 

For the study, researchers looked at a novel potential way to treat tinnitus by having people use neurofeedback training to turn their focus away from the sounds in their ears. Neurofeedback is a way of training the brain by allowing an individual to view some type of external indicator of brain activity and attempt to exert control over it.

 

"The idea is that in people with tinnitus there is an over-attention drawn to the auditory cortex, making it more active than in a healthy person," said Matthew S. Sherwood, Ph.D., research engineer and adjunct faculty in the Department of Biomedical, Industrial and Human Factors Engineering at Wright State University in Fairborn, Ohio. "Our hope is that tinnitus sufferers could use neurofeedback to divert attention away from their tinnitus and possibly make it go away."

 

To determine the potential efficacy of this approach, the researchers had 18 healthy volunteers with normal hearing undergo five fMRI-neurofeedback training sessions. Study participants were given earplugs through which white noise could be introduced for periods of time. The earplugs also served to block out the scanner noise.

 

To obtain fMRI results, the researchers used single-shot echoplanar imaging, an MRI technique that is sensitive to blood oxygen levels, providing an indirect measure of brain activity.

 

"We started with alternating periods of sound and no sound in order to create a map of the brain and find areas that produced the highest activity during the sound phase," Dr. Sherwood said. "Then we selected the voxels that were heavily activated when sound was being played."

 

The participants then participated in the fMRI-neurofeedback training phase while inside the MRI scanner. They received white noise through their earplugs and were able to view the activity in their primary auditory cortex as a bar on a screen. Each fMRI-neurofeedback training run contained eight blocks separated into a 30-second "relax" period followed by a 30-second "lower" period. Participants were instructed to watch the bar during the relax period and actively attempt to lower it by decreasing primary auditory cortex activity during the lower phase.

 

The researchers gave the participants techniques to help them do this, such as trying to divert attention from sound to other sensations like touch and sight.

 

"Many focused on breathing because it gave them a feeling of control," Dr. Sherwood said. "By diverting their attention away from sound, the participants' auditory cortex activity went down, and the signal we were measuring also went down."

 

A control group of nine individuals were provided sham neurofeedback -- they performed the same tasks as the other group, but the feedback came not from them but from a random participant. By performing the exact same procedures with both groups using either real or sham neurofeedback, the researchers were able to distinguish the effect of real neurofeedback on control of the primary auditory cortex.

 

The study represents the first time fMRI-neurofeedback training has been applied to demonstrate that there is a significant relationship between control of the primary auditory cortex and attentional processes. This is important to therapeutic development, Sherwood said, as the neural mechanisms of tinnitus are unknown but likely related to attention.

 

The results represent a promising avenue of research that could lead to improvements in other areas of health like pain management, according to Dr. Sherwood.

 

"Ultimately, we'd like take what we learned from MRI and develop a neurofeedback program that doesn't require MRI to use, such as an app or home-based therapy that could apply to tinnitus and other conditions," he said.

https://www.sciencedaily.com/releases/2017/11/171127091127.htm

Read More
TBI/PTSD Larry Minikes TBI/PTSD Larry Minikes

Neurofeedback Tunes Key Brain Networks, Improving Well-Being in PTSD

Dec. 3, 2013 —

Science Daily/University of Western Ontario

Pioneering research conducted at Western University points to a promising avenue for the treatment of post-traumatic stress disorder (PTSD): utilising neurofeedback training to alter the plasticity of brain networks linked to the condition.

 

uring neurofeedback, intentional control of one's own brain activity may be learned with what's called a brain-computer interface, which is able to represent graphically a person's real-time brain activation on a computer. This can be done noninvasively with brainwave activities, for example, where the computer monitor behaves like a virtual "mirror" to real electrical oscillations produced by neurons in the cortex. These are recorded by surface sensors on the scalp, also known as an electroencephalogram (EEG).

 

Senior author and principal investigator Dr. Ruth Lanius, a professor at the Department of Psychiatry at Western's Schulich School of Medicine & Dentistry and a scientist with Lawson Health Research Institute, adds "The last decade of neuroscience research has offered a deeper understanding of the key brain networks involved in cognitive and emotional functions.

 

We are now on the threshold of being able to use this information to understand the neural mechanisms underlying certain disorders and their treatments. Neurofeedback offers great promise as a type of brain training that is directly based on the functional activation of these brain networks. We are therefore thrilled to see the first evidence of this in action, along with significant changes in subjective well-being. Our hope and vision for the future is that this approach could improve and potentially augment PTSD treatment."

http://www.sciencedaily.com/releases/2013/12/131203112213.htm

 

Read More