Adolescence/Teens 18 Larry Minikes Adolescence/Teens 18 Larry Minikes

Studies link air pollution to mental health issues in children

September 25, 2019

Science Daily/Cincinnati Children's Hospital Medical Center

Three new studies by scientists at Cincinnati Children's Hospital Medical Center, in collaboration with researchers at the University of Cincinnati, highlight the relationship between air pollution and mental health in children.

 

A study to be published Sept. 25 in Environmental Health Perspectives found that short-term exposure to ambient air pollution was associated with exacerbations of psychiatric disorders in children one to two days later, as marked by increased utilization of the Cincinnati Children's emergency department for psychiatric issues. The study also found that children living in disadvantaged neighborhoods may be more susceptible to the effects of air pollution compared to other children, especially for disorders related to anxiety and suicidality.

 

The lead authors of this study are Cole Brokamp, PhD, and Patrick Ryan, PhD. They are researchers in the division of Biostatistics and Epidemiology at Cincinnati Children's.

 

"This study is the first to show an association between daily outdoor air pollution levels and increased symptoms of psychiatric disorders, like anxiety and suicidality, in children," says Dr. Brokamp. "More research is needed to confirm these findings, but it could lead to new prevention strategies for children experiencing symptoms related to a psychiatric disorder. The fact that children living in high poverty neighborhoods experienced greater health effects of air pollution could mean that pollutant and neighborhood stressors can have synergistic effects on psychiatric symptom severity and frequency."

 

Two other Cincinnati Children's studies were recently published that also link air pollution to children's mental health:

 ·      A study published in Environmental Research found an association between recent high traffic related air pollution (TRAP) exposure and higher generalized anxiety. The study is believed to be the first to use neuroimaging to link TRAP exposure, metabolic disturbances in the brain, and generalized anxiety symptoms among otherwise healthy children. The study found higher myoinositol concentrations in the brain -- a marker of the brain's neuroinflammatory response to TRAP.

·      The lead authors of this study are Kelly Brunst, PhD, a researcher in the department of Environmental Health at the University of Cincinnati, and Kim Cecil, PhD, a researcher at Cincinnati Children's.

·      A study published in Environmental Research found that exposure to TRAP during early life and across childhood was significantly associated with self-reported depression and anxiety symptoms in 12 year olds. Similar findings have been reported in adults, but research showing clear connections between TRAP exposure and mental health in children has been limited.

 

The lead authors of the study are Kimberly Yolton, PhD, director of research in the division of General and Community Pediatrics at Cincinnati Children's, and Dr. Ryan.

 

"Collectively, these studies contribute to the growing body of evidence that exposure to air pollution during early life and childhood may contribute to depression, anxiety, and other mental health problems in adolescence," says Dr. Ryan. "More research is needed to replicate these findings and uncover underlying mechanisms for these associations."

https://www.sciencedaily.com/releases/2019/09/190925075731.htm

Read More
Adolescence/Teens 14 Larry Minikes Adolescence/Teens 14 Larry Minikes

Air pollution linked to childhood anxiety

Researchers investigate traffic-related air pollution and symptoms of childhood anxiety, through neuroimaging

May 21, 2019

Science Daily/University of Cincinnati Academic Health Center

A new study looks at the correlation between exposure to traffic-related air pollution (TRAP) and childhood anxiety, by looking at the altered neurochemistry in pre-adolescents.

 

Exposure to air pollution is a well-established global health problem associated with complications for people with asthma and respiratory disease, as well as heart conditions and an increased risk of stroke, and according to the World Health Organization, is responsible for millions of deaths annually. Emerging evidence now suggests that air pollution may also impact the metabolic and neurological development of children.

 

A new study from researchers at the University of Cincinnati and Cincinnati Children's Hospital Medical Center looks at the correlation between exposure to traffic-related air pollution (TRAP) and childhood anxiety, by looking at the altered neurochemistry in pre-adolescents.

 

"Recent evidence suggests the central nervous system is particularly vulnerable to air pollution, suggesting a role in the etiology of mental disorders, like anxiety or depression," says Kelly Brunst, PhD, assistant professor in the Department of Environmental Health at the College of Medicine, and lead author on the study.

 

"This is the first study to use neuroimaging to evaluate TRAP exposure, metabolite dysregulation in the brain and generalized anxiety symptoms among otherwise healthy children," says Brunst.

 

The study was published by the journal Environmental Research.

 

The researchers evaluated imaging of 145 children at an average age of 12 years, looking specifically at the levels of myo-inositol found in the brain through a specialized MRI technique, magnetic resonance spectroscopy. Myo-inositol is a naturally-occurring metabolite mainly found in specialized brain cells known as glial cells, that assists with maintaining cell volume and fluid balance in the brain, and serves as a regulator for hormones and insulin in the body. Increases in myo-inositol levels correlate with an increased population of glial cells, which often occurs in states of inflammation.

 

They found that, among those exposed to higher levels of recent TRAP, there were significant increases of myo-inositol in the brain, compared to those with lower TRAP exposure. They also observed increases in myo-inositol to be associated with more generalized anxiety symptoms. "In the higher, recent exposure group, we saw a 12% increase in anxiety symptoms," says Brunst.

 

Brunst noted however, that the observed increase in reported generalized anxiety symptoms in this cohort of typically developing children was relatively small and are not likely to result in a clinical diagnosis of an anxiety disorder. "However, I think it can speak to a bigger impact on population health ... that increased exposure to air pollution can trigger the brain's inflammatory response, as evident by the increases we saw in myo-inositol," says Brunst. "This may indicate that certain populations are at an increased risk for poorer anxiety outcomes."

https://www.sciencedaily.com/releases/2019/05/190521162421.htm

Read More

Exposure to air pollution before and after birth may affect fundamental cognitive abilities

May 23, 2019

Science Daily/Barcelona Institute for Global Health (ISGlobal)

A growing body of research suggests that exposure to air pollution in the earliest stages of life is associated with negative effects on cognitive abilities. A new study led by the Barcelona Institute for Global Health (ISGlobal), a centre supported by "la Caixa," has provided new data: exposure to particulate matter with a diameter of less than 2.5 μm (PM2.5) during pregnancy and the first years of life is associated with a reduction in fundamental cognitive abilities, such as working memory and executive attention.

 

The study, carried out as part of the BREATHE project, has been published in Environmental Health Perspectives. The objective was to build on the knowledge generated by earlier studies carried out by the same team, which found lower levels of cognitive development in children attending schools with higher levels of traffic-related air pollution.

 

The study included 2,221 children between 7 and 10 years of age attending schools in the city of Barcelona. The children's cognitive abilities were assessed using various computerized tests. Exposure to air pollution at home during pregnancy and throughout childhood was estimated with a mathematical model using real measurements.

 

The study found that greater PM2.5 exposure from pregnancy until age 7 years was associated with lower working memory scores on tests administered between the ages of 7 and 10 years. The results suggest that exposure to fine particulate matter throughout the study period had a cumulative effect, although the associations were stronger when the most recent years of exposure were taken into account. Working memory is a cognitive system responsible for temporarily holding information for subsequent manipulation. It plays a fundamental role in learning, reasoning, problem-solving and language comprehension.

 

Sex-stratified analysis showed that the relationship between PM2.5 exposure and diminished working memory was found only in boys. "As yet, we don't understand what causes these differences, but there are various hormonal and genetic mechanisms that could lead to girls having a better response to inflammatory processes triggered by fine particulate matter and being less susceptible to the toxicity of these particles," commented Ioar Rivas, ISGlobal researcher and lead author of the study.

 

The study also found that higher exposure to particulate matter was associated with a reduction in executive attention in both boys and girls. Executive attention is one of the three networks that make up a person's attention capacity. It is involved in high-level forms of attention, such as the detection and resolution of conflicts between options and responses, error detection, response inhibition, and the regulation of thoughts and feelings.

 

Whereas previous studies in the BREATHE project analysed exposure to air pollution at schools over the course of a year, this study assessed exposures at the participants' homes over a much longer time: from the prenatal period to 7 years of age.

 

"This study reinforces our previous findings and confirms that exposure to air pollution at the beginning of life and throughout childhood is a threat to neurodevelopment and an obstacle that prevents children from reaching their full potential," commented Jordi Sunyer, Childhood and Environment Programme Coordinator at ISGlobal and last author of the study.

https://www.sciencedaily.com/releases/2019/05/190523104925.htm

Read More