Remember the first time you...? Mysterious brain structure sheds light on addiction

Cocaine-addicted mice shed light on claustrum's role in associating reward with context

July 23, 2020

Science Daily/The Hebrew University of Jerusalem

Do you remember where you were when you first heard that two planes had crashed into New York's Twin Towers? Or where you had your first kiss? Our brains are wired to retain information that relates to the context in which highly significant events occurred. This mechanism also underlies drug addiction and is the reason why hanging out in an environment or with people associated with memories of drug use often leads to relapse.

How our brains create this strong association, however, is less clear. Now, new research by Professor Ami Citri and PhD student Anna Terem at Hebrew University of Jerusalem (HU)'s Edmond and Lily Safra Center for Brain Sciences and the Alexander Silberman Institute of Life Science, shows that a relatively obscure brain region known as the claustrum plays a significant role in making these connections. They published their findings in the latest edition of Current Biology.

The researchers' findings fit the idea of "incentive salience," the process that determines the desirability of an otherwise neutral stimulus. For example, a candy store façade becomes very attractive to kids after repeated associations with the rewarding treats that lie within. In time, children unconsciously learn to "want" to see the store stimulus, which is separate from their "liking" the actual candy reward. Taking a closer look at how context becomes associated with cocaine, the researchers found a group of neurons within the claustrum that lit up during cocaine use. Further, these neurons are pivotal in the formation of an incentive salience that links context with the pleasure of cocaine.

To determine when and how the claustrum participates in incentive salience, Citri and his team employed a conditioned-place preference (CPP) test for a group of lab mice. During this test, the mice learned to associate reward with context. The researcher administered cocaine to the mice and placed them in an area with distinctive flooring (rugged) and wall patterns (dots), ones that a mouse would notice, as the drug started to kick in. After a few times of this, when placed in a room where the mice could choose either to hang out in a region similar to the one paired with cocaine (rugged floors and dots wall) or a neutral area (smooth floor and striped walls), the mice would quickly congregate in the area where their drug high had played out.

To test the claustrum's involvement in how a context becomes associated with a given reward, Citri and his team observed the changes in mice behavior when they inhibited these claustral neurons. They found that the inhibition of these neurons inhibited the mice's behavioral responses to cocaine, meaning they no longer preferred hanging out in the cocaine-paired environment. On the other hand, activating these neurons -- even in the absence of any cocaine -- caused the mice to develop a preference for this context.

Importantly, the team found that the activity of the claustrum was not necessary for retrieval of the cocaine memory. Once the mice had been placed in a cocaine-paired context several times to enjoy their cocaine high, the memory for this context was encoded and inhibition of the claustrum had no effect on their preference for the cocaine-paired context. "These findings boosted our confidence that the claustrum is indeed integral to incentive salience, heightening the awareness of the mouse to the context in which it experienced the drug high" shared Citri.

As the number of deaths caused by drug overdose increases from year to year, this new study has wide-ranging implications towards a better understanding of the nature of addiction and the importance of breaking contextual cues before they develop. "By recognizing that the claustrum plays a pivotal role in creating a context association for reward, it becomes a structure of interest for the field of addiction. We hope this knowledge will lead to the development of new diagnostic tools to identify populations susceptible to addiction, as well as new therapeutic approaches," concluded Terem.

https://www.sciencedaily.com/releases/2020/07/200723115904.htm

Read More
Cannabis/Psychedelic 10 Larry Minikes Cannabis/Psychedelic 10 Larry Minikes

How psychedelic drug psilocybin works on brain

June 5, 2020

Science Daily/Johns Hopkins Medicine

To see how psychedelics impact the claustrum, a mysterious region of the brain believed to control the ego, researchers compared the brain scans of people after they took psilocybin with their scans after taking a placebo.

Perhaps no region of the brain is more fittingly named than the claustrum, taken from the Latin word for "hidden or shut away." The claustrum is an extremely thin sheet of neurons deep within the cortex, yet it reaches out to every other region of the brain. Its true purpose remains "hidden away" as well, with researchers speculating about many functions. For example, Francis Crick of DNA-discovery fame believed that the claustrum is the seat of consciousness, responsible for awareness and sense of self.

What is known is that this region contains a large number of receptors targeted by psychedelic drugs such as LSD or psilocybin ¾ the hallucinogenic chemical found in certain mushrooms. To see what happens in the claustrum when people are on psychedelics, Johns Hopkins Medicine researchers compared the brain scans of people after they took psilocybin with their scans after taking a placebo.

Their findings were published online on May 23, 2020, in the journal NeuroImage.

The scans after psilocybin use showed that the claustrum was less active, meaning the area of the brain believed responsible for setting attention and switching tasks is turned down when on the drug. The researchers say that this ties in with what people report as typical effects of psychedelic drugs, including feelings of being connected to everything and reduced senses of self or ego.

"Our findings move us one step closer to understanding mechanisms underlying how psilocybin works in the brain," says Frederick Barrett, Ph.D., assistant professor of psychiatry and behavioral sciences at the Johns Hopkins University School of Medicine and a member of the school's Center for Psychedelic and Consciousness Research. "This will hopefully enable us to better understand why it's an effective therapy for certain psychiatric disorders, which might help us tailor therapies to help people more."

Because of its deep-rooted location in the brain, the claustrum has been difficult to access and study. Last year, Barrett and his colleagues at the University of Maryland, Baltimore, developed a method to detect brain activity in the claustrum using functional magnetic resonance imaging (fMRI).

For this new study, the researchers used fMRI with 15 people and observed the claustrum brain region after the participants took either psilocybin or a placebo. They found that psilocybin reduced neural activity in the claustrum by 15% to 30%. This lowered activity also appeared to be associated with stronger subjective effects of the drug, such as emotional and mystical experiences. The researchers also found that psilocybin changed the way that the claustrum communicated with brain regions involved in hearing, attention, decision-making and remembering.

With the highly detailed imaging of the claustrum provided by fMRI, the researchers next hope to look at the mysterious brain region in people with certain psychiatric disorders such as depression and substance use disorder. The goal of these experiments will be to see what roles, if any, the claustrum plays in these conditions. The researchers also plan to observe the claustrum's activity when under the influence of other psychedelics, such as salvinorin A, a hallucinogen derived from a Mexican plant.

https://www.sciencedaily.com/releases/2020/06/200605121512.htm

Read More