exercise brain health

Short-term exercise equals big-time brain boost

Even a one-time, brief burst of exercise can improve focus, problem-solving

December 21, 2017

Science Daily/University of Western Ontario

 

A 10-minute, one-time burst of exercise can measurably boost your brain power, at least temporarily, researchers at Western University in London, Canada, have found.

 

While other studies have showed brain-health benefits after 20-minutes of a single-bout of exercise, or following commitment to a long-term (24-week) exercise program, this research suggests even 10 minutes of aerobic activity can prime the parts of the brain that help us problem-solve and focus.

 

"Some people can't commit to a long-term exercise regime because of time or physical capacity," said Kinesiology Prof. Matthew Heath, who is also a supervisor in the Graduate Program in Neuroscience and, with master's student Ashna Samani, conducted the study. "This shows that people can cycle or walk briskly for a short duration, even once, and find immediate benefits."

 

During the study, research participants either sat and read a magazine or did 10 minutes of moderate-to-vigorous exercise on a stationary bicycle. Following the reading and exercise session, the researchers used eye-tracking equipment to examine participants' reaction times to a cognitively demanding eye movement task. The task was designed to challenge areas of the brain responsible for executive function such as decision-making and inhibition.

 

"Those who had exercised showed immediate improvement. Their responses were more accurate and their reaction times were up to 50 milliseconds shorter than their pre-exercise values. That may seem minuscule but it represented a 14-per-cent gain in cognitive performance in some instances," said Heath, who is also an associate member of Western's Brain and Mind institute. He is conducting a study now to determine how long the benefits may last following exercise.

 

The work has significance for older people in early stages of dementia who may be less mobile, he said, and for anyone else looking to gain quick a mental edge in their work.

 

"I always tell my students before they write a test or an exam or go into an interview -- or do anything that is cognitively demanding -- they should get some exercise first," Heath said. "Our study shows the brain's networks like it. They perform better.

https://www.sciencedaily.com/releases/2017/12/171221122543.htm

Scientists identify protein linking exercise to brain health

October 10, 2013

Science Daily/Dana-Farber Cancer Institute

A protein that is increased by endurance exercise has been isolated and given to non-exercising mice, in which it turned on genes that promote brain health and encourage the growth of new nerves involved in learning and memory, report scientists from Dana-Farber Cancer Institute and Harvard Medical School.

 

The findings, reported in the journal Cell Metabolism, help explain the well-known capacity of endurance exercise to improve cognitive function, particularly in older people. If the protein can be made in a stable form and developed into a drug, it might lead to improved therapies for cognitive decline in older people and slow the toll of neurodegenerative diseases such Alzheimer's and Parkinson's, according to the investigators.

 

"What is exciting is that a natural substance can be given in the bloodstream that can mimic some of the effects of endurance exercise on the brain," said Bruce Spiegelman, PhD, of Dana-Farber and HMS. He is co-senior author of the publication with Michael E. Greenberg, PhD, chair of neurobiology at HMS.

 

The Spiegelman group previously reported that the protein, called FNDC5, is produced by muscular exertion and is released into the bloodstream as a variant called irisin. In the new research, endurance exercise -- mice voluntarily running on a wheel for 30 days -- increased the activity of a metabolic regulatory molecule, PGC-1α, in muscles, which spurred a rise in FNDC5 protein. The increase of FNDC5 in turn boosted the expression of a brain-health protein, BDNF (brain-derived neurotrophic protein) in the dentate gyrus of the hippocampus, a part of the brain involved in learning and memory.

 

It has been found that exercise stimulates BDNF in the hippocampus, one of only two areas of the adult brain that can generate new nerve cells. BDNF promotes development of new nerves and synapses -- connections between nerves that allow learning and memory to be stored -- and helps preserve the survival of brain cells.

 

How exercise raises BDNF activity in the brain wasn't known; the new findings linking exercise, PGC-1α, FNDC5 and BDNF provide a molecular pathway for the effect, although Spiegelman and his colleagues suggest there are probably others.

 

Having shown that FNDC5 is a molecular link between exercise and increased BDNF in the brain, the scientists asked whether artificially increasing FNDC5 in the absence of exercise would have the same effect. They used a harmless virus to deliver the protein to mice through the bloodstream, in hopes the FNDC5 could reach the brain and raise BDNF activity. Seven days later, they examined the mouse brains and observed a significant increase in BDNF in the hippocampus.

 

"Perhaps the most exciting result overall is that peripheral deliver of FNDC5 with adenoviral vectors is sufficient to induce central expression of Bdnf and other genes with potential neuroprotective functions or those involved in learning and memory," the authors said. Spiegelman cautioned that further research is needed to determine whether giving FNDC5 actually improves cognitive function in the animals. The scientists also aren't sure whether the protein that got into the brain is FNDC5 itself, or irisin, or perhaps another variant of the protein.

http://www.sciencedaily.com/releases/2013/10/131010204803.htm

 

Member Login
Welcome, (First Name)!

Forgot? Show
Log In
Enter Member Area
My Profile Not a member? Sign up. Log Out